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Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions
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The hopping motion of lattice gases through potentials without mirror-reflection symmetry is investigated
under various bias conditions. The model of two particles on a ring with four sites is solved explicitly; the
resulting current in a sawtooth potential is discussed. The current of lattice gases in extended systems consist-
ing of periodic repetitions of segments with sawtooth potentials is studied for different concentrations and
values of the bias. Rectification effects are observed, similar to the single-particle case. A mean-field approxi-
mation for the current in the case of strong bias acting against the highest barriers in the system is made and
compared with numerical simulations. The particle-vacancy symmetry of the model is discussed.

PACS number~s!: 05.40.2a
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I. INTRODUCTION

The motion of particles in potentials that do not ha
mirror reflection symmetry has attracted much attention
the last years for several reasons. The interest extends
fundamental problems concerning the validity of the seco
law of thermodynamics@1,2# to applications in biological
@3–7# and chemical systems@8#, as well as for solid-state
devices@9,10#. Major efforts have been devoted to an und
standing of molecular motors, where proteins move in n
symmetric potentials under the influence of stochastic an
other forces. One specific observation for transport in n
symmetric potentials is the possibility of rectification effec
if the forces on the particles are beyond the regime wh
linear-response theory is applicable@11#. Rectification ef-
fects have been discussed in continuous@12# as well as in
hopping systems@4,11#. If applications of effects of particle
motion in nonsymmetric potentials are envisaged, then
question arises as to the influence of many-particle effe
The limit of single-particle motion is rarely realized; in re
systems many particles are present that compete abou
sites that can be occupied. Many-particle effects have b
studied in continuous nonsymmetric periodic potentials
Ref. @13#, where interesting dependencies of the current
particle concentration and size were found. In this paper
will investigate hopping motion of lattice-gas particles
nonsymmetric hopping potentials under the influence
strong bias. We utilize the simple site exclusion model wh
multiple occupancy of sites is excluded and direct our att
tion to nonlinear effects on the particle current.

The stationary current of a single particle performing
hopping motion in a nonsymmetric potential under an ar
trary bias is known exactly@11#. The calculation of the sta
tionary current of site-exclusion lattice gases in nonsymm
ric potentials that lead to rectification effects in the sing
particle case is a difficult problem. Extensive work has be
devoted to the asymmetric site-exclusion process includ
the totally asymmetric site-exclusion process~TASEP!
where the particles can only hop in one direction, cor
sponding to very strong bias. The case of uniform hopp
potentials is now well understood@14#, but the case of non
uniform potentials is not generally solved. Recent work h
PRE 611063-651X/2000/61~3!/2319~8!/$15.00
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been devoted to the TASEP with disordered potentials@15–
20#. For the general asymmetric case one has to resor
numerical simulations; we are going to present simulat
results for the stationary current of lattice-gas particles
nonsymmetric potentials, for various concentrations and v
ues of the bias.

Nonetheless, some analytical treatment can be giv
First, the case of very small periodic systems can be trea
explicitly: the motion of two particles on a ring of period
can be solved by elementary means. Although this is a v
simple system, conclusions can be drawn in the limit of ve
strong bias that are of interest for the totally asymme
site-exclusion process. The nonlinear current of s
exclusion lattice gases in extended systems with perio
repetitions of nonsymmetric segments can be derived i
mean-field approximation for strong bias conditions. Int
esting symmetry properties have been pointed out for
TASEP in disordered hopping potentials@18–20#. While a
particle-vacancy symmetry is also present in our model,
case of inversion of the bias direction is different here.

In the following section the hopping motion of two pa
ticles on a ring of period 4 is solved and analyzed. In Sec.
a mean-field approximation for the stationary current of l
tice gases under strong bias in nonsymmetric hopping po
tials is presented and compared with simulation results i
sawtooth potential. The symmetry properties of the mo
are discussed in Sec. IV and concluding remarks are give
Sec. V.

II. TWO PARTICLES ON RING WITH FOUR SITES

A. Solution of the stationary master equations

A very simple yet nontrivial model is given by a ring wit
four sites and two particles; cf. Fig. 1. The basic quantit
for the description of the system are the joint probabilit
P( i , j ;t) ( iÞ j ) of finding one particle at sitei and the other
particle at sitej, at time t, for specified initial conditions.
Since the particles are considered as indistinguisha
P( i , j ;t)5P( j ,i ;t). There are six different joint two-particle
probabilities on the ring consisting of four sites@generally
L(L21)/2 on rings withL sites#. Higher-order joint prob-
abilities do not occur for two particles.
2319 ©2000 The American Physical Society
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2320 PRE 61K. W. KEHR AND Z. KOZA
The probabilitiesP( i ;t) of finding a particle at sitei at
time t are given by

P~ i ;t !5(
j Þ i

P~ i , j ;t !. ~1!

For two particles they are normalized to

(
i 51

4

P~ i ;t !52. ~2!

This condition implies

(
i , j

P~ i , j ;t !51. ~3!

The master equations for the joint probabilities are ea
written down,

d

dt
P~1,2;t !5d3P~1,3;t !1g4P~2,4;t !2~g21d1!P~1,2;t !,

d

dt
P~2,3;t !5d4P~2,4;t !1g1P~1,3;t !2~g31d2!P~2,3;t !,

d

dt
P~3,4;t !5d1P~1,3;t !1g2P~2,4;t !2~g41d3!P~3,4;t !,

d

dt
P~1,4;t !5d2P~2,4;t !1g3P~1,3;t !2~g11d4!P~1,4;t !,

d

dt
P~1,3;t !5g2P~1,2;t !1d2P~2,3;t !1g4P~3,4;t !

1d4P~1,4;t !2~g11d11g31d3!P~1,3;t !,

d

dt
P~2,4;t !5d1P~1,2;t !1g3P~2,3;t !1d3P~3,4;t !

1g1P~1,4;t !2~g21d21g41d4!P~2,4;t !.

~4!

The sum of the six master equations leads to the conse
tion law

d

dt S (i , j
P~ i , j ;t ! D 50, ~5!

FIG. 1. ~a! Ring of four sites with two particles.~b! Sawtooth
potential with period 4 without bias (b51) with two transition rates
indicated.
y

a-

consistent with the relation~3! given above.
We are interested in the stationary solution of the syst

of master equations~4!. The stationary valuesP( i , j ;t→`)
will be denoted byPi j . The stationary joint probabilities fo
adjacent sites, e.g.,P12, can all be expressed by the statio
ary joint probabilitiesP13 andP24. For instance, the first line
of Eq. ~4! yields

P125
1

g21d1
~d3P131g4P24!. ~6!

Three analogous relations follow from Eqs.~4!; they can be
obtained by cyclically increasing the indices in Eq.~6!. If the
joint probabilities for adjacent sites are eliminated from t
stationary master equations, two homogeneous equation
main that are equivalent. We write this equation as

a11P131a12P2450, ~7!

with the coefficients

a1152S d1d3

g21d1
1

g1g3

g31d2
1

d1d3

g41d3
1

g1g3

g11d4
D ,

a125
g2g4

g21d1
1

d2d4

g31d2
1

g2g4

g41d3
1

d2d4

g11d4
. ~8!

The second equation forP13 andP24 is obtained from the
normalization condition, Eq.~3!, after elimination of the
joint probabilities of adjacent sites. It reads

a21P131a22P2451, ~9!

with the coefficients

a215
d3

g21d1
1

g1

g31d2
1

d1

g41d3
1

g3

g11d4
11,

a225
g4

g21d1
1

d4

g31d2
1

g2

g41d3
1

d2

g11d4
11. ~10!

The solution of the two linear equations is

P135
2a12

a11a222a12a21
,

P245
a11

a11a222a12a21
. ~11!

Since the joint probabilities for adjacent sites are obtain
from the P13, P24, and the one-site stationary probabilitie
Pi[P( i ;t→`) from Eq. ~1!, Eq. ~11! represents the com
plete solution of the stationary problem.

We derive the stationary current in the system by cons
ering the bond connecting sites 1 and 2. The stationary
rent is given by

J5g1~P12P12!2d2~P22P12!. ~12!

The joint probabilities in Eq.~12! ensure exclusion of double
occupancy of sites. Using Eq.~1! the current is expressed i
terms of the joint probabilities,
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J5g1~P131P14!2d2~P231P24!. ~13!

Insertion of the stationary solution for the joint probabiliti
gives

J5
g11g31d21d4

~g11d4!~g31d2!
~g1g3P132d2d4P24!. ~14!

The current may also be derived by considering the ot
bonds of the ring. Two equivalent forms of the current res
the second~equivalent! form reads

J5
g21g41d11d3

~g21d1!~g41d3!
~g2g4P242d1d3P13!. ~15!

It can be shown that the current vanishes if the right and
transition rates fulfill the following condition:

g1g2g3g45d1d2d3d4 , ~16!

corresponding to a detailed balance relation over the rin

B. Solution for the sawtooth potential

The sawtooth potential including bias on a four-site ri
is defined by choosing

g15g25g35g45bg,

d15b21g4, ~17!

d25d35d45b21,

whereb represents the bias andg,1 is a constant represen
ing a transition rate to the right in the absence of a bias;
Fig. 1~b!. Note that the right transition rates are explicit
multiplied by the bias factorb and the left transition rates b
b21, respectively. Physically,b5exp(DU/2kBT), whereDU
represents the potential drop between two neighboring s
under the influence of the bias. Forb51 the system satisfie
the detailed balance condition and the currentJ vanishes. In
what follows the current obtained in a system withM par-
ticles will be denoted asJM .

In Fig. 2 we present a plot ofJ1 andJ2 as functions of the
biasb for the ring with four sites andg5exp(22). The result
for the two-particle system was obtained using Eq.~15!, and
for a single-particle system we employed the exact solu
derived in Ref.@11#. We can see that the behavior of th
currents of one- and two-particle systems are qualitativ
similar. Of course, the currentJ2 of two particles is larger
than the one-particle currentJ1. The inset shows the behav
ior of the current for smaller bias. The curves for the bias
the right and to the left become equal in the limitb→1, i.e.,
in the linear-response regime for two particles on the r
with four sites and also for one particle on this ring. Ho
ever, the two-particle current is about 17% larger than
one-particle current.

In the case of a strong bias to the right,b@1, the two-
particle currentJ2 differs from J1 by a constant factor. Fo
the sawtooth potential this behavior can be understood
follows. If b@1, only transitions to the right are importan
and backward transitions can be neglected. In our mode
transition rates to the right are all equal,g i5bg for i
r
t;
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51, . . . ,4. Hence for b@1 all stationary site occupation
probabilities become equal,Pi51/2 for the four-site ring and
Pi52/L for a ring withL sites. In the limit of a strong bias to
the right all stationary joint probabilities also become equ
i.e., ; i , j Pi j 51/6 for the four-site ring and, generally,Pi j
52/L(L21) ~see Ref.@21#!. Using expression~12! we thus
expect that, forb@1,

J'bgF2

L
2

2

L~L21!G . ~18!

For L54 there is thusJ25bg/3, which should be compare
with the single-particle currentJ15bg/4. Similarly, in the
general case of anL-site ring we have

lim
b→`

J2

J1
5

2~L22!

L21
. ~19!

For the four-site ring this limiting behavior can be eas
derived from the exact formula~15!. Actually, for L54, g
5exp(22), andb510 there isJ2 /J1'1.3337, in agreemen
with the above considerations.

Figure 2 also shows thatJ2 becomes almost identical t
J1 in the case of a strong bias to the left,b!1. To under-
stand this phenomenon assume thatg!1, so thatd1!d2
5d35d4, i.e., site 1 acts as a ‘‘bottle-neck.’’ Ifb!1 the
particles are driven against the high barrier at site 1, wh
has a relatively very small transition rated1 to the left. The
second particle on site 2 has to wait until the first particle h
jumped over the high barrier, and only then can it make
attempt to jump over that barrier. Soon after the first parti
has managed to pass the bottleneck at site 1, the se
particle will jump from site 2 to 1 and the first particle wi
quickly line up behind the second particle, waiting for it
jump over the high barrier. Consequently, the current
comes practically equal to that of a single-particle system
is evident that in the limit of a large bias to the left th
system behaves as a TASEP on a ring with one defect. If
defect is characterized, in a discrete-time dynamics, by

FIG. 2. Particle currentJ ~arbitrary units! as a function of the
dimensionless bias parameter. Upper curves, bias to the right
scissa indicatesb; lower curves, bias to the left, abscissa indica
1/b. Dashed lines, two particles on the ring with four sites; f
lines, single particle on the ring. Inset, behavior for small bias~lin-
ear axes!.



-
cu

n

th
o

ar
m

o
tri
s
e
er
ica
m
n
t
ig

lfi
h

v

a

r-

a
.
b

EP

s

nd
tes

t is

ites
s

is
ore

ro-
ent

ere

, 0

e.

cu-

-
to

g

ead

2322 PRE 61K. W. KEHR AND Z. KOZA
transition probabilityp!1, the current ofM particles on a
ring with L sites (M,L) will approach the one-particle cur
rent. The above reasoning is confirmed by an explicit cal
lation of the currentJ2 in the limit b→0. Using Eq.~15!, we
conclude, after some algebra, thatJ2'2b21(11g4)(5g4

12g2415)21. Since for a single-particle system the curre
J1, for b!1, is approximately equalb21g4(113g4) ~see
Ref. @11#!, we find that

lim
b→0

J2

J1
5

2~11g4!~113g4!

5g815g412
. ~20!

For g→0, i.e., for a growing asymmetry of the sawtoo
potential, this limit actually approaches 1. In particular, f
the value of g5exp(22) used in Fig. 2 there is
lim

b→0
J2 /J1'1.0005.

Note, however, that in contrast to the caseb@1, for b
!1 the current depends on the parameterg characterizing
the inhomogeneity of the sawtooth potential. In particul
for g51, which corresponds to a fully homogeneous syste
lim

b→0
J2 /J154/3. Actually, for g51, the ratio J2 /J1

equals 4/3 irrespective of the biasb ~see@21#!.

III. EXTENDED NONSYMMETRIC POTENTIALS

A. The model

In this section lattice gases in extended potentials are c
sidered that consist of periodic repetitions of nonsymme
segments. First the situation of very strong bias is discus
and a mean-field approximation is given for the case wh
the particles experience periodically arranged high barri
The analytical results are then compared with numer
simulations of the motion of lattice-gas particles in nonsy
metric hopping potentials for different concentrations a
under various bias conditions. The hopping potential tha
used in this section is the sawtooth potential shown in F
1~b!, except that it is periodically repeated with periodL.
The nearest-neighbor transition rates from sitel to l 61 are
G l ,l 61. As a short notation we useg l[G l ,l 11 for the ‘‘right’’
andd l[G l ,l 21 for the ‘‘left’’ transition rates. Without addi-
tional bias, the transition rates between neighbor sites fu
detailed balance. Bias is introduced by multiplying all rig
transition rates byb, g l→bg l , and all left transition rates by
b21, d l→b21d l .

The linear chain on which the model is defined shall ha
N5nL sites where we considern@1 in this section. Peri-
odic boundary conditions are introduced and the sites
occupied by M particles. The concentration is thenr
5M /N. Multiple occupancy of the sites is excluded; no fu
ther interactions of the particles are taken into account.

B. Strong bias

1. The case bš1

For b@1 we can apply essentially the same reasoning
in the case of the two-particle system considered in Sec
In this limit transitions to the left are so rare that they can
-

t
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ignored and the system essentially behaves like a TAS
with transitionsg i5bg, i 51, . . . ,N. The current for such a
system reads@21#

J5bgM
N2M

N21
. ~21!

For large system sizesN@1 this formula can be rewritten a

J~r!5bgr~12r!. ~22!

2. The case b™1

For b!1 we can neglect transition rates to the right, a
so the system behaves like a TASEP with transition ra
d i5b21g4 if i 51(modL) and d i5b21 otherwise. If addi-
tionally g51, all d i are equal to each other and the curren
given simply by Eq.~21!.

A more complicated situation appears forg!1, a condi-
tion that will be assumed henceforth. In this case, s
i 51,L11, . . . ,N2L11 act on the flow of particles a
‘‘bottlenecks,’’ for the mean time necessary to leave them
much larger than the time to leave any other site. Theref
the system, which consists ofn similar segments of lengthL,
effectively behaves like a ring made up ofn similar
‘‘boxes,’’ each able to contain up toL particles. A transition
from a segmentj to j 21 occurs with a rateb21g4, irrespec-
tive of the number of particles in each of the segments, p
vided, of course, that there is at least one particle in segm
j and at mostL21 particles in segmentj 21.

Let Qn denote the probability that in the steady state th
are n particles in a given segment (n50, . . . ,L). Let Qm,n
denote the joint probability of finding, in the steady state
<m<L particles at a given segmentj and 0<n<L particles
at j 11. Of course,Qn andQm,n do not depend onj, and the
Qn satisfy

(
n50

L

Qn51, ~23!

(
n50

L

nQn5Lr. ~24!

Let us assume a mean-field approximation,Qm,n
5QmQn . In the stationary state the mean numberNn of
segments occupied byn particles does not depend on tim
As the particles hop between segments,Nn can decrease
when one of the particles jumps from or to a segment oc
pied by n particles. The corresponding rates areQn(1
2QL) and Qn(12Q0), respectively. The number of seg
ments containingn particles can also increase owing
jumps ending at segments containingn21 particles or origi-
nating at segments withn11 particles; the correspondin
transition rates areQn21(12Q0) andQn11(12QL), respec-
tively. Consequently, the appropriate balance conditions r

~Qn2Qn11!~12QL!5~12Q0!~Qn212Qn!, ~25!

Q1~12QL!5~12Q0!Q0 , ~26!

QL~12QL!5~12Q0!QL21 , ~27!
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wheren51, . . . ,L21 in Eq.~25!, and in Eqs.~26! and~27!
we have taken into account the fact that neither jumps fr
a segment containing 0 particles nor transitions to a segm
with L particles are possible. Together with Eqs.~23! and
~24! these relations formL13 equations forL11 variables
Qn , n50, . . . ,L, with the concentrationr being the only
free parameter. This system of equations is easily show
have a unique solution

Qn5
an

11a1 . . . 1aL
, ~28!

where the parametera can be determined using

Lr5

(
n50

L

nan

(
n50

L

an

. ~29!

The concentrationr is a monotonic function ofa, increasing
from 0 for a50 to 1 in the limit a→`. The valuea51
corresponds tor5 1

2 and, generally,

r~a!512r~1/a!. ~30!

Having obtainedQn we can calculate the current as

J5b21g4~12Q0!~12QL!

5b21g4

aS (
n50

L21

anD 2

S (
n50

L

anD 2 . ~31!

Using ~30! it is easy to see that

J~r!5J~12r!. ~32!

Because forr! 1
2 Eq. ~29! implies a'r/L, using our for-

mula ~31! we conclude that for small concentrations of pa
ticles the currentJ grows linearly withr,

J'b21g4L21r. ~33!

For r5 1
2 the mean-field theory~31! predicts

J~0.5!5
b21g4L2

~L11!2
. ~34!

C. Numerical simulations

In our simulations we used a lattice withN5400 sites
consisting ofm5100 segments, each of lengthL54. We
used a sawtooth potential withg5exp(22)'0.135. The
number of particles in the system varied fromM51 to M
5399. We carried out our simulations fort5106 Monte
Carlo time steps per particle and the results were avera
over ten different realizations of the process, which enab
us to estimate the statistical errors.
nt

to

-

ed
d

We first present simulation results for the current a
fixed concentrationr50.5, or forM5200, as a function of
the bias parameterb for bias to the right, andb21 for bias to
the left, respectively. Figure 3 shows the currentJ observed
in simulations~symbols! together with a simple approxima
tion obtained by multiplying a single-particle currentJ1 @11#
by the numberM of particles in the system~free particle
approximation!. One observes that the current in the case
a system with a hard-core interactions is reduced as c
pared to the case of noninteracting particles, but the gen
behavior as a function of the bias parameter is practically
same. In particular, the rectification effects for particle m
tion in nonsymmetric potentials are qualitatively the same
both cases. The inset in Fig. 3 depicts the ratioJ/MJ1 as a
function of the bias. Owing to Eq.~21! we expect that for
b@1 J/MJ15(N2M )/(N21)'12r. Forb520 we found
J/MJ1'0.501460.0001, in excellent agreement with th
theoretical value 200/399'050125. Forb!1 our mean-field
approximation ~34! predicts J/MJ15L2/2(L11)250.32;
for b51/20 our simulations yielded a slightly smaller valu
0.30560.001.

We now discuss the dependence of the current on con
tration for selected values of the biasb.1, or b,1, respec-
tively, and compare the results with the theoretical consid
ations of Sec. III B. In Fig. 4 we present results of o
simulations for a bias to the right (b530, 10, and 2!. For a
strong bias (b530) the agreement with the theoretical pr
diction, Eq.~22!, is very good.

The results obtained for a bias to the left (b50.001, 0.1,
0.5, and 0.9! are depicted in Fig. 5. We can see that if t
bias is strong (b<0.1), the agreement between the mea
field theory~solid line! and the simulation data~circles and
crosses! is very good for concentrations close to 0 and
However, for r' 1

2 we observe that the mean-field theo
tends to overestimate the actual value ofJ by approximately
5%, which is much more than the statistical errors of o
data ~the relative standard deviation atr50.5 is about
0.33%!. We repeated our simulations for larger number

FIG. 3. CurrentJ ~arbitrary units! as a function of the dimen-
sionless bias parameter for the concentrationr50.5. Upper curves,
bias to the right, abscissa indicatesb; lower curves, bias to the left
abscissa indicates 1/b. Full lines, single-particle currentJ1 of Ref.
@11# multiplied by the number of particlesM. Symbols, result of
numerical simulations forN5400, L54, g5exp(22), t5106. The
~semilogarithmic! inset shows the ratioJ/MJ1.
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2324 PRE 61K. W. KEHR AND Z. KOZA
Monte Carlo time steps (t553106) and for different values
of the biasb, but the difference between simulations and t
theory remained practically the same. We thus conclude
it is not a numerical artifact. A similar discrepancy was o
served by Tripathy and Barma@18#, who considered a
TASEP with random transition rates. However, in th
model the mean-field approach underestimated the ma
tude of the current obtained in simulations forr'0.5. More-
over, they found thatJ(r) has quite a broad plateau aroun

FIG. 4. The dimensionless current,J/ 1
4 bg, as a function of the

dimensionless concentrationr for the bias b530 ~crosses!, 10
~circles!, and 2~squares!. The solid line was computed using E
~22!. The parameters areN5400, L54, g5exp(22), andt5106.
Results were averaged over 10 Monte Carlo simulations. The e
bars are shown only forb530; for other values ofb they are simi-
larly small.

FIG. 5. The dimensionless currentJ/bg24, as a function of the
dimensionless concentrationr for the biasb51023 ~crosses!, 0.1
~circles!, 0.5~squares!, and 0.9~diamonds!. The solid line was com-
puted using Eq.~31!. The parameters are the same as in Fig. 4. T
error bars, shown only forb51023, are of similar order for other
values ofb and represent the standard deviation.
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r50.5. This phenomenon is not observed in our case
cause the transition rates in our model are not random.

IV. SYMMETRY PROPERTIES

In this section we discuss the symmetry properties of
lattice-gas model with nonsymmetric potentials and of
lated models. In the simulations, as well as in the mean-fi
approximation, the current exhibits a particle-vacancy sy
metry,

J~r!5J~12r!. ~35!

The symmetry properties of the TASEP have been analy
in @18–20# and the relation, Eq.~35!, has been established i
this context. However, the model employed in those ref
ences differs in important aspects from our model. Henc
detailed discussion is in order.

The particle-vacancy symmetry of the current for t
TASEP has been shown in Refs.@18–20# for disordered hop-
ping potentials where the transition rates are associated
the bonds between the sites. If the motion of the particle
reversed~symmetry operationT according to Refs.@18,20#,
the particles experience the same set of transition rate
before, only the order of the rates has been changed. If
vacancies are interpreted as particles~symmetry operation
C), they experience the same transition rates as the part
after the operationT. The symmetry underCT is evident; the
nontrivial statement is the symmetry of the current~up to a
sign! under the operationsC, or T, separately.

The class of models for the hopping potential that a
considered here do not correspond to bond disorder. The
of ‘‘right’’ transition rates is different from the set of the
‘‘left’’ transition rates. If a strong biasb@1 to the right is
applied, leading approximately to a TASEP, the current
different from the case of strong bias to the left withb21

@1. In other words, the symmetry under reversal of mot
T does not exist for the class of models leading to rectifi
tion, by their definition. If the vacancies are considered
particles, they experience the same set of transition rate
the original particles, see also below. We conjecture t
symmetry under the operationC also exists for our models, i
the limiting case of the TASEP is considered. Hence
expect Eq.~35! to be approximately valid for the models th
lead to rectification effects, in the limit of very strong bias

The sawtooth potential that is investigated in this pa
has a special symmetry, which will be described now. In
limit of concentration of the lattice gas approaching 1, t
particle problem is equivalent to the problem of hoppi
motion of single, independent vacancies. The hopping tr
sitions of an isolated vacancy are reversed in compariso
the transitions of the particle that makes an exchange w
the vacancy, e.g.,

G l ,l 11
V 5G l 11,l . ~36!

Using the rates, Eq.~36!, it is easy to reconstruct the
hopping potential for single vacancies. If this construction
done for the the extended sawtooth potential of Fig. 1~b!, a
sawtooth potential is obtained for the vacancy that is mirr
symmetric with respect to the original sawtooth potenti
see Fig. 6. If a bias is applied to the particles, expressed
the factorb in the transition rates to the right, the factorb

or

e
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appears in the transition rates of the vacancy to the left.
evident from this consideration that the particle current
r→0 is identical to the one forr→1. It is obvious that a
particle-vacancy symmetry pertains for the problem of m
tion of lattice gases in a sawtooth potential with the abo
symmetry property; hence we expect Eq.~35! to be valid for
all values of the biasb.

We point out that the sawtooth potential represents a s
cial case; general nonsymmetric potentials do not prov
mirror-symmetric potentials for the vacancies in the limitr
→1. For instance, if the potential corresponding to
Ehrlich-Schwoebel barrier~see, e.g.,@22#! is transformed by
using Eq.~36! in the corresponding hopping potential of
single vacancy, a different potential is obtained. As a con
quence, the mobility of a single particle is different from t
mobility of a single vacancy. Hence for this exampleJ(r)
ÞJ(12r) for b close to 1. This example is sufficient t
show that the particle-vacancy symmetry~35! cannot be gen-
erally valid for arbitraryb. Another counterexample is pro
vided by the random-trap model; see Ref.~@23#!.

V. CONCLUDING REMARKS

In this paper we investigated the motion of lattice-g
particles in hopping potentials that are composed of s
ments without mirror-reflection symmetry. We considered

FIG. 6. ~a! Repetition of the sawtooth potential of Fig. 1 wit
lattice-gas particles indicated.~b! Effective potential for a single
vacancy, constructed according to Eq.~36!.
g-
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-
e
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e

e-

s
g-

particular the effects of exclusion of multiple occupancy
sites under various bias conditions. We first studied the c
of two particles on a ring of four sites with a sawtooth p
tential. The explicit solution of this simple system can
given and interesting conclusions emerge in the limits
large bias to the right or to the left. We point out that the ri
with four sites is a model case for the treatment of two s
exclusion particles on a finite ring; larger systems can
solved in a similar manner, e.g., by using symbolic formu
manipulation programs.

We then investigated the case of many particles on
tended systems that consist of periodic repetitions of s
tooth potentials. These systems behave, for strong bias in
direction, as uniform systems where the result for the curr
of lattice gases is known. For strong bias in the reverse
rections, the extended sawtooth potential acts as a peri
arrangement of weak links. A mean-field expression for
current can be derived for this case from the cluster dyna
ics of the particles on the segments, which shows similari
to the cluster dynamics of the bosonic lattice gases of R
@24#. Good agreement with the numerical simulations w
found for both cases under strong bias; deviations appea
smaller bias values. The results for the current exhibi
particle-vacancy symmetry as a consequence of a spe
particle-hole symmetry of the hopping processes in the s
tooth potential used.

Generally, the current per particle of a site-exclusion l
tice gas shows the same qualitative behavior, as a functio
the strength and the direction of the bias parameter, as
current of independent particles. This observation is imp
tant for possible applications; for instance, for transp
through channels in membranes or through layered struct
with suitable potential structures. It means that qualitative
even semiquantitative predictions of the effects of stro
bias on the current can already be obtained from the sin
particle description.
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